Прохождение света через стекло. Почему стекло прозрачное? Добавить свою цену в базу Комментарий. Почему стекло прозрачно



07.02.2017 15:49 850

Почему стекло прозрачное.

Стекло, это очень важный материал, который человек использует в разных сферах жизни. Из него делают окна, посуду, зеркала, линзы для очков и т.д...

Вот представьте себе: возвращаетесь вы из школы и обнаруживаете, что в окнах вашей квартиры нет стёкол. Исчезла также из дома и вся стеклянная посуда. Вы хотите посмотреть на своё удивлённое лицо в зеркало, но и его не оказалось на месте... Да и многих других полезных вещей у нас бы сейчас не было, если бы в своё время не появилось стекло.

В нашей статье, мы расскажем вам историю стекла, как оно вошло в нашу жизнь и почему оно такое прозрачное. Кто же изобрел этот полезный, хрупкий материал? Как ни странно - никто. Дело в том, что стекло было создано самой природой.

Когда-то давным-давно, еще за много миллионов лет до появления на земле первого человека, стекло уже существовало. А образовалось оно из сначала раскалённой, а затем остывшей лавы, вырвавшейся на поверхность из вулканов. Это природное стекло называется сейчас обсидианом.

Однако остеклять, например, окна, им было нельзя. И не только потому, что окон тогда ещё не было, но и потому, что природное стекло имеет грязно-серый цвет, и через него абсолютно ничего не видно.

Так как же появилось стекло, пригодное для употребления,то есть прозрачное? Может быть люди научились его отмывать? Увы, природное стекло грязное не снаружи, а изнутри, поэтому здесь не помогут никакие даже самые современные моющие средства...

О том, как люди впервые сделали стекло, приближённое к современному, существует несколько легенд. Все они очень однообразны и их смысл сводится к тому, что путешественники, не имея под рукой камней для очага, использовали вместо них куски природной соды.

Причем, происходило это в пустыне или на берегу водоёма, там, где обязательно был песок. И вот под воздействием огня сода и песок плавились и соединялись вместе, образуя стекло. Люди долгое время верили в эти легенды. Но совсем недавно выяснилось, что всё это неправда, потому что жара исходящего от костра, для такого сплава недостаточно.

Производить стекло своими руками люди начали более 5-ти тысяч лет назад, было это в Египте. Правда, и тогда оно прозрачным не было, а из-за того, что в песке попадались посторонние примеси, имело зелёный или синий оттенок. Но постепенно на Востоке научились избавляться от этих примесей. Судя по раскопкам, первыми стеклянными изделиями были бусы.

Чуть позже стеклом стали покрывать посуду. А на то, чтобы научиться делать её полностью из стекла, чекловеку потребовалось ещё 2 тысячи лет. Секрет производства стекла был в те времена настолько ценен, что правительство Венеции в начале ХIII века для его выяснения направило на восток специальных людей.В результате, венецианцы этот секрет раздобыли.

Они наладили собственное производство и смогли сделать стекло ещё более прозрачным, догадавшись добавлять в его состав немного свинца. Сначала стекло изготавливалось в самой Венеции. Местные власти очень боялись, что кто-то узнает секрет производства, поэтому район, где эти мастерские располагались, был всегда оцеплён солдатами.

Никто из рабочих занятых производством стекла не имел права покинуть пределы города. За любую попытку это сделать к смертной казни приговаривался не только сам стеклодел, но и вся его семья. В конце концов было решено перенести мастерские на остров Мурано. Оттуда и сбежать было труднее, и попасть туда было тоже сложно.

В 1271 году венецианские шлифовщики научились делать из стекла линзы, которые сначала особым спросом не пользовались. Но в 1281 году догадались вставлять их в специально разработанные оправы.Так появились первые очки. Они стоили сначала настолько дорого, что являлись прекрасным подарком даже для королей и императоров.

В конце 15 века, когда в Венеции научились делать из стекла посуду, муранские (названные так в честь острова где их производили) изделия стали пользоваться во всём мире такой популярностью, что для их доставки пришлось строить дополнительные корабли.

Но усовершенствование стекла продолжалось и позже. Пришло время, и люди придумали покрывать его специальным составом – амальгамой, так появились зеркала.

В России производство стекла началось тысячу лет назад, в небольших мастерских. А в 1634 году под Москвой был построен первый стекольный завод.


Оптические свойства стекол связаны с характерными особенностями взаимодействия световых лучей со стеклом. Именно оптические свойства определяют красоту и своеобразие декоративной обработки стеклоизделий.

Преломление и дисперсия характеризуют закономерности распространения света в веществе в зависимости от его строения. Преломление света - это изменение направления распространения света при его переходе из одной среды в другую, отличающуюся от первой значением скорости распространения.

На рис. 6 представлен путь луча при прохождении его через плоскопараллельную стеклянную пластину. Падающий луч образует углы с нормалью к поверхности раздела сред в точке падения. Если луч идет из воздуха в стекло, то i - угол падения, r - угол преломления (на рисунке i>r, потому что в воздухе скорость распространения световых волн больше, чем в стекле, в данном случае воздух является средой оптически менее плотной, чем стекло).

Преломление света характеризуется относительным показателем преломления - отношением скорости света в среде, из которой свет падает на границу раздела, к скорости света во второй среде. Показатель преломления определяется из соотношения n=sin i/sin r . Относительный показатель преломления не имеет размерности, и для прозрачных сред воздух - стекло всегда больше единицы. Например, относительные показатели преломления (по отношению к воздуху): воды- 1,33, хрустального стекла - 1,6, - 2,47.


Рис. 6. Схема прохождения луча через плоскопараллельную стеклянную пластину


Рис. 7. Призматический (дисперсионный) спектр а - разложение луча света призмой; б- диапазоны цветов видимей части

Дисперсия света - это зависимость показателя преломления от частоты света (длины волны). Для нормальной дисперсии характерно возрастание показателя преломления с увеличением частоты или с уменьшением длины волны.

Вследствие дисперсии пучок света, проходящий сквозь призму из стекла, образует на экране, установленном за призмой, радужную полосу - призматический (дисперсионный) спектр (рис. 7,а). В спектре цвета расположены в определенной последовательности, начиная от фиолетового и кончая красным (рис. 7,6).

Причиной разложения света (дисперсии) является зависимость показателя преломления от частоты света (длины волны): чем выше частота света (короче длина волны), тем выше показатель преломления. В призматическом спектре наибольшей частотой и наименьшей длиной волны обладают фиолетовые лучи, а наименьшей частотой и наибольшей длиной волны - красные лучи, следовательно, фиолетовые лучи преломляются больше, чем красные.

Показатель преломления и дисперсия зависят от состава стекла, а показатель преломления - и от плотности. Чем выше плотность, тем выше показатель преломления. Оксиды CaO, Sb 2 O 3 , PbO, BaO, ZnO и щелочные повышают показатель преломления, добавка SiO 2 - снижает. Дисперсия возрастает при введении Sb 2 O 3 и PbO. СаО и ВаО сильнее влияют на показатель преломления, чем на Дисперсию. Для производства высокохудожественных изделий, сортовой посуды, подвергающихся шлифованию, используют в основном стекла, содержащие до 30 % PbO, так как PbO значительно увеличивает показатель преломления и дисперсию.

Отражение света - явление, наблюдаемое при падении света на поверхность раздела двух оптически разнородных сред и состоящее в образовании отраженной волны, распространяющейся от поверхности раздела в ту же среду, из которой приходит падающая волна. Отражение характеризуется коэффициентом отражения, который равен отношению отраженного светового потока к падающему.

От поверхности стекла отражается около 4 % света. Эффект отражения усиливается при наличии многочисленных полированных поверхностей (алмазная резьба, гранение).

Если неровности поверхности раздела малы по сравнению с длиной волны падающего света, то происходит зеркальное отражение, если неровности больше длины волны - диффузное отражение, при котором свет рассеивается поверхностью по всевозможным направлениям. Отражение называется селективным, если коэффициент отражения неодинаков для света с различной длиной волны. Селективным отражением объясняется окраска непрозрачных тел.

Рассеяние света - явление, наблюдаемое при распространении световых волн в среде с беспорядочно распределенными неоднородностями и состоящее в образовании вторичных волн, которые распространяются по всевозможным направлениям.

В обычном прозрачном стекле рассеяния света практически не происходит. Если поверхность стекла неровная (матовое стекло) или в толще стекла равномерно распределены неоднородности (кристаллы, включения), то световые волны не могут пройти через стекло без рассеяния и поэтому такое стекло непрозрачно.

Пропускание и поглощение света объясняется следующим. При прохождении пучка света интенсивностью I 0 через прозрачную среду (вещество) интенсивность первоначального потока ослабляется и выходящий из среды пучок света будет иметь интенсивность I< I 0 . Ослабление светового потока связано частично с явлениями отражения и рассеяния света, что главным образом происходит за счет поглощения световой энергии, обусловленного взаимодействием света с частицами среды.

Поглощение снижает общую светопрозрачность стекла, которая для бесцветного натрий-кальций-силикатного стекла составляет примерно 93%. Поглощение света различно для различных длин волн, поэтому окрашенные стекла имеют разный цвет. Цвет стекла (табл. 2), который воспринимается глазом, обусловлен цветом той части падающего пучка света, которая прошла через стекло непоглощенной.

Показатели пропускания (поглощения) в видимой области спектра важны для оценки цвета сортовых, сигнальных и других окрашенных стекол, в инфракрасной области - для технологических процессов варки стекла и формования изделий (теплопрозрачность стекол), в ультрафиолетовой - для эксплуатационных свойств стекол (изделия из увиолевого стекла должны пропускать ультрафиолетовые лучи, а тарные - задерживать).

Двойное лучепреломление - раздвоение луча света при прохождении через оптически анизотропную среду, т. е. среду с различными свойствами по разным направлениям (например, большинство кристаллов). Это явление происходит потому, что показатель преломления зависит от направления электрического вектора световой волны. Луч света, входящий в кристалл, разлагается на два луча - обыкновенный и необыкновенный. Скорости распространения этих лучей различны. Двойное лучепреломление измеряется разностью хода лучей, нм/см.

При неравномерном охлаждении или нагревании стекла в нем возникают внутренние напряжения, вызывающие двойное лучепреломление, т. е. стекло уподобляется двупреломляющему кристаллу, например кварца, слюды, гипса. Это явление используется для контроля качества термической обработки стекла, главным образом отжига и закалки.

Как известно, все тела состоят из молекул, а молекулы – из атомов. Атомы устроены тоже не сложно (в нашем, простецком описании на пальцах). В центре каждого атома находится ядро, состоящее из протона, или группы протонов и нейтронов, а вокруг, по кругу вращаются электроны на своих электронных орбитах/орбиталях.

Свет тоже устроен просто. Забудем (кто помнил) про корпускулярно-волновой дуализм и уравнения Максвелла, пусть свет будет потоком шариков-фотонов, летящий из фонарика прямо к нам в глаз.

Теперь, если мы поставим между фонариком и глазом бетонную стенку – мы больше не увидим света. А если посветим на эту стенку фонариком с нашей стороны – наоборот увидим, ибо луч света отразится от бетона, и попадет к нам в глаз. Но сквозь бетон свет не пойдет.

Логично предположить, что шарики-фотоны отражаются и не проходят сквозь бетонную стену потому, что бьются об атомы вещества, т.е. бетона. Точнее бьются об электроны, ибо электроны вращаются так быстро, что фотон не проникает сквозь электронную орбиталь к ядру, а отскакивает и отражается уже от электрона.

Почему же свет проходит сквозь стеклянную стену? Ведь внутри стекла тоже молекулы и атомы, и если взять достаточно толстое стекло, любой фотон рано или поздно должен столкнуться с каким-нибудь из них, ведь атомов же триллионы в каждой крупинке стекла! Все дело в том, как происходят столкновения электронов с фотонами. Возьмем самый простой случай, один электрон вращается вокруг одного протона (это атом водорода) и представим себе, что по этому электрону шарахнуло фотоном.

Вся энергия фотона перешла электрону. Говорят, что фотон поглотился электроном и исчез. А электрон получил дополнительную энергию (которую нес с собой фотон) и от этой дополнительной энергии он подскочил на более высокую орбиту и стал летать дальше от ядра.

Чаще всего более высокие орбиты менее устойчивы, и через какое-то время, электрон испустит этот фотон, т.е. «отпустит его на свободу», а сам вернется на свою низкую устойчивую орбиту. Испущенный фотон полетит в совершенно случайную сторону, потом будет поглощен другим, соседним атомом, и так и останется блуждать в веществе, пока случайно не излучится назад обратно, или не пойдет в конечном итоге на нагрев бетонной стены.

А теперь самое интересное. Электронные орбиты не могут находиться где угодно вокруг ядра атома. У каждого атома каждого химического элемента есть четко детерминированный и конечный набор уровней или орбит. Электрон не может чуть-чуть подняться выше или немного опуститься пониже. Он может перескочить лишь на вполне четкий промежуток вверх или вниз, а так как эти уровни различаются энергиями, это означает, что только фотон с определенной и весьма точно заданной энергией может подтолкнуть электрон на более высокую орбиту.

Получается, что если у нас летят три фотона с разными энергиями, и только у одного она точно равна разнице энергий между уровнями какого-то конкретного атома, лишь этот фотон «столкнется» с атомом, остальные пролетят мимо, в буквальном смысле «сквозь атом», ибо не смогут сообщить электрону четко заданную порцию энергии для перехода на другой уровень.

А как мы можем найти фотоны с разными энергиями?

Вроде бы, чем больше скорость, тем выше энергия, это знает каждый, но ведь все фотоны летят с одной и той же скоростью – скоростью света!

Может быть чем ярче и мощнее источник света (например если взять армейский прожектор, вместо фонарика), тем больше энергии будет у фотонов? Нет. В мощном и ярком луче прожектора просто большее количество самих штук фотонов, но энергия у каждого отдельного фотона точно такая же, как и у тех, что вылетают из дохлого карманного фонарика.

И вот тут нам придется все-таки вспомнить, что свет это не только поток шариков-частиц, но еще и волна. Разные фотоны отличаются разной длиной волны, т.е. разной частотой собственных колебаний. И чем выше частота колебаний, тем более мощный заряд энергии несет фотон.

Низкочастотные фотоны (инфракрасного света или радиоволны) несут мало энергии, высокочастотные (ультрафиолетовый свет или рентгеновское излучение) – много. Видимый свет – где-то посредине. Вот тут и кроется разгадка прозрачности стекла! Все атомы в стекле имеют электроны на таких орбитах, что для перехода на более высокую им необходим толчок энергии, которой не достаточно у фотонов видимого света. Поэтому он проходит сквозь стекло, практически не сталкиваясь с его атомами.

А вот ультрафиолетовые фотоны – вполне себе несут энергию, необходимую для перехода электронов с орбиту на орбиту, поэтому в ультрафиолетовом свете обычное оконное стекло – абсолютно черное и непрозрачное.

Причем, что интересно. Слишком много энергии – тоже плохо. Энергия фотона должна быть в точности равна энергии перехода между орбитами, от чего любое вещество прозрачно для одних длин (и частот) электромагнитных волн, и не прозрачно для других, потому что все вещества состоят из разных атомов и их конфигураций.

Например, бетон прозрачен для радиоволн, и инфракрасного излучения, непрозрачен для видимого света и ультрафиолета, не прозрачен так же для рентгена, но снова прозрачен (в какой-то мере) для гамма-излучения.

Именно поэтому правильно говорить, что стекло прозрачно для видимого света. И для радиоволн. И для гамма-излучения. Но непрозрачно для ультрафиолета. И почти не прозрачно для инфракрасного света.

А если еще вспомнить, что видимый свет тоже не весь белый, а состоит из разных длин (т.е. цветов) волн от красного до темно-синего, станет примерно понятно, почему предметы имеют разные цвета и оттенки, почему розы красные, а фиалки – голубые.

Почему газы прозрачны, а твердые тела нет?

Температура играет решающую роль в том, будет ли данное вещество твердым, жидким или газообразным. При нормальном давлении на поверхности земли при температуре 0 градусов Цельсия и ниже вода – твердое тело. При температурах между 0 и 100 градусами Цельсия вода – жидкость. При температуре выше 100 градусов Цельсия вода – газ. Пар из кастрюли распространяется по кухне равномерно во все стороны. На основании вышесказанного предположим, что сквозь газы можно видеть, а сквозь твердые тела это невозможно. Но некоторые твердые вещества, например такие, как стекло, столь же прозрачны, как воздух. Как это получается? Большинство твердых веществ поглощает падающий на них свет. Часть поглощенной световой энергии уходит на нагревание тела. Большая часть падающего света отражается. Поэтому мы видим твердое тело, но не можем видеть сквозь него.

Выводы

Вещество выглядит прозрачным, когда кванты света (фотоны) проходят сквозь него, не поглощаясь. Но фотоны имеют разную энергию, а каждое химическое соединение поглощает лишь те фотоны, которые обладают подходящей ему энергией. На видимый свет – от красного до фиолетового – приходится очень небольшой диапазон энергий фотонов. И как раз этим диапазоном «не интересуется» диоксид кремния, основной компонент стекла. Поэтому фотоны видимого света почти беспрепятственно проходят сквозь стекло.

Вопрос не в том, почему стекло прозрачное, а в том, почему не прозрачны другие объекты. Все дело в энергетических уровнях, на которых находятся электроны в атоме. Можно представить их в виде различных рядов на стадионе. У электрона есть определенное место на одном из рядов. Однако, если у него достаточно энергии, он может перепрыгнуть на другой ряд. В ряде случаев поглощение одного из проходящих через атом фотонов как раз и обеспечит необходимую энергию. Но тут загвоздка. Чтобы перебросить электрон с ряда на ряд, фотон должен обладать строго определенным количеством энергии, иначе он пролетит мимо. Так и происходит со стеклом. Ряды так далеко друг от друга, что энергии фотона видимого света просто недостаточно для перемещения электронов между ними.

А у фотонов ультрафиолетового спектра энергии хватает, поэтому они поглощаются, и тут уж, как ни старайся, спрятавшись за стеклом, не загоришь. За столетие, прошедшее с получения стекла, люди сполна оценили его уникальное свойство быть одновременно и твердым, и прозрачным. От окон, впускающих дневной свет, и защищающих от стихии, до приборов, позволяющих заглядывать далеко в космос, или наблюдать микроскопические миры.

Лишите современную цивилизацию стекла, и что от нее останется? Как ни странно, мы редко задумываемся о том, насколько оно важно. Наверное, так происходит потому что, будучи прозрачным, стекло остается незаметным, и мы забываем о том, что оно есть.

В статье я пробую рассказать, почему некоторые вещества прозрачны для видимого света, а другие нет. Полностью эта тема - весьма сложна и уходит в самые дебри физических процессов, затрагивая оптику, химию, квантовую механику и еще множество смежных дисциплин и включает в себя вырвиглазные формулы и зубодробильный матаппарат. Я сознательно буду делать весьма широкие допущения, опуская 9/10х того, что происходит в веществе на самом деле .

Моя цель - рассказать так, чтобы стало понятно школьнику, который даже еще не начал изучать физику, т.е. буквально пятикласснику.


Итак, как известно, все тела состоят из молекул, а молекулы - из атомов. Атомы устроены не сложно (в нашем, простецком описании на пальцах™ ). В центре каждого атома находится ядро, состоящее из протона, или группы протонов и нейтронов, а вокруг, по кругу вращаются электроны на своих электронных орбитах/орбиталях.

Свет тоже устроен довольно просто. Забудем (кто помнил) про корпускулярно–волновой дуализм и уравнения Максвелла, пусть свет будет потоком шариков–фотонов, летящий из фонарика прямо к нам в глаз.

Теперь, если мы поставим между фонариком и глазом бетонную стенку - мы больше не увидим света. А если посветим на эту стенку фонариком с нашей стороны - наоборот увидим, ибо луч света отразится от бетона, и попадет к нам в глаз. Но сквозь бетон свет не пойдет.

Логично предположить, что шарики–фотоны отражаются и не проходят сквозь бетонную стену потому, что бьются об атомы вещества, т.е. бетона. Точнее бьются об электроны, ибо электроны вращаются так быстро , что фотон не проникает сквозь электронную орбиталь к ядру, а отскакивает и отражается уже от электрона.

Почему же свет проходит сквозь стеклянную стену? Ведь внутри стекла тоже молекулы и атомы, и если взять достаточно толстое стекло, любой фотон рано или поздно должен столкнуться с каким–нибудь из них, ведь атомов же триллионы в каждой крупинке стекла!

Все дело в том, как происходят столкновения электронов с фотонами. Возьмем самый простой случай, один электрон вращается вокруг одного протона (это атом водорода) и представим себе, что по этому электрону шарахнуло фотоном.

Вся энергия фотона перешла электрону. Говорят, что фотон поглотился электроном и исчез. А электрон получил дополнительную энергию (которую нес с собой фотон) и от этой дополнительной энергии он подскочил на более высокую орбиту и стал летать дальше от ядра.

Поглощение фотона электроном и переход последнего на более высокую орбиту

Чаще всего более высокие орбиты менее устойчивы, и через какое–то время, электрон испустит этот фотон, т.е. "отпустит его на свободу" , а сам вернется на свою низкую устойчивую орбиту. Испущенный фотон полетит в совершенно случайную сторону, потом будет поглощен другим, соседним атомом, и так и останется блуждать в веществе, покуда случайно не излучится назад обратно, или не пойдет в конечном итоге на нагрев бетонной стены.

А теперь самое интересное. Электронные орбиты не могут находиться где угодно вокруг ядра атома. У каждого атома каждого химического элемента есть четко детерминированный и конечный набор уровней или орбит. Электрон не может чуть–чуть подняться выше или немного опуститься пониже. Он может перескочить лишь на вполне четкий промежуток вверх или вниз, а так как эти уровни различаются энергиями, это означает, что только фотон с определенной и весьма точно заданной энергией может подтолкнуть электрон на более высокую орбиту.

Получается, что если у нас летят три фотона с разными энергиями, и только у одного она точно равна разнице энергий между уровнями какого–то конкретного атома, лишь этот фотон "столкнется" с атомом, остальные пролетят мимо, в буквальном смысле "сквозь атом", ибо не смогут сообщить электрону четко заданную порцию энергии для перехода на другой уровень.

А как мы можем найти фотоны с разными энергиями?

Вроде бы, чем больше скорость, тем выше энергия, это знает каждый, но ведь все фотоны летят с одной и той же скоростью - скоростью света!

Может быть чем ярче и мощнее источник света (например если взять армейский прожектор, вместо фонарика), тем больше энергии будет у фотонов? Нет. В мощном и ярком луче прожектора просто большее количество самих штук фотонов, но энергия у каждого отдельного фотона точно такая же, как и у тех, что вылетают из дохлого карманного фонарика.

И вот тут нам придется все–таки вспомнить, что свет это не только поток шариков–частиц, но еще и волна. Разные фотоны отличаются разной длиной волны, т.е. разной частотой собственных колебаний. И чем выше частота колебаний, тем более мощный заряд энергии несет фотон.

Низкочастотные фотоны (инфракрасного света или радиоволны) несут мало энергии, высокочастотные (ультрафиолетовый свет или рентгеновское излучение) - много. Видимый свет - где–то посредине.

Вот тут и кроется разгадка прозрачности стекла!
Все атомы в стекле имеют электроны на таких орбитах, что для перехода на более высокую им необходим толчок энергии, которой не достаточно у фотонов видимого света. Поэтому он проходит сквозь стекло, практически не сталкиваясь с его атомами.

А вот ультрафиолетовые фотоны - вполне себе несут энергию, необходимую для перехода электронов с орбиту на орбиту, поэтому в ультрафиолетовом свете обычное оконное стекло - совершенно черное и непрозрачное.

Причем, что интересно. Слишком много энергии - тоже плохо. Энергия фотона должна быть в точности равна энергии перехода между орбитами, от чего любое вещество прозрачно для одних длин (и частот) электромагнитных волн, и не прозрачно для других, потому что все вещества состоят из разных атомов и их конфигураций, т.е. молекул.

Например бетон прозрачен для радиоволн, и инфракрасного излучения, непрозрачен для видимого света и ультрафиолета, не прозрачен так же для рентгена, но снова прозрачен (в какой–то мере) для гамма-излучения.

Именно по этому правильно говорить, что стекло прозрачно для видимого света . И для радиоволн. И для гамма-излучения. Но непрозрачно для ультрафиолета. И почти не прозрачно для инфракрасного света.

А если еще вспомнить, что видимый свет тоже не весь белый, а состоит из разных длин (т.е. цветов) волн от красного до темно–синего, станет примерно понятно, почему предметы имеют разные цвета и оттенки, почему розы красные, а фиалки - голубые. Но, это уже тема для другого поста, объясняющего сложные физические явления простым языком аналогий на пальцах™ .

Будучи ребёнком, я однажды спросил отца: "Почему стекло пропускает свет?" К тому времени я узнал, что свет - это поток частиц, называемых фотонами, и мне казалось удивительным, как такая маленькая частица может пролетать сквозь толстое стекло. Отец ответил: "Потому что оно прозрачное". Я промолчал, т. к. понимал, что "прозрачное" есть всего лишь синоним выражения "пропускает свет", а отец на самом деле не знает ответа. В школьных учебниках ответа тоже не было, а знать хотелось бы. Почему же стекло пропускает свет?

Ответ

Светом физики называют не только видимый свет, но и невидимое инфракрасное излучение, ультрафиолетовое излучение, рентгеновские лучи, гамма-излучение, радиоволны. Материалы, прозрачные для одной части спектра (например, для зелёного света), могут быть непрозрачными для других частей спектра (красное стекло, например, не пропускает зелёных лучей). Обычное стекло не пропускает ультрафиолетовое излучение, а кварцевое стекло прозрачно для ультрафиолета. Для рентгеновских лучей прозрачными являются материалы, которые совсем не пропускают видимый свет. И т. д.

Свет состоит из частиц, называемых фотонами. Фотоны разного "цвета" (частоты) несут разные порции энергии.

Фотоны могут поглощаться веществом, передавая ему энергию и нагревая (хорошо известно всем, кто загорал на пляже). Свет может отражаться от вещества, попадая после нам в глаза, поэтому мы видим вокруг себя предметы, а в полной темноте, где нет источников света, мы ничего не видим. И свет может проходить сквозь вещество - и тогда мы говорим, что это вещество прозрачно.

Разные материалы в разных пропорциях поглощают, отражают и пропускают свет и поэтому различаются по своим оптическим свойствам (более тёмные и светлые, разного цвета, блеска, прозрачности): сажа поглощает 95% падающего на неё света, а отполированное серебряное зеркало отражает 98% света. Создан материал на основе углеродных нанотрубок, который отражает лишь 45 тысячных процента падающего света.

Возникают вопросы: когда фотон поглощается веществом, когда отражается и когда проходит сквозь вещество? Нас сейчас интересует только третий вопрос, но попутно мы ответим на первый.

Взаимодействие света и вещества - это взаимодействие фотонов с электронами. Электрон может поглощать фотон и может испускать фотон. Нет никакого отражения фотонов. Отражением фотонов называют двухступенчатый процесс: поглощение фотона и последующее излучение точно такого же фотона.

Электроны в атоме способны занимать лишь определённые орбиты, каждой из которых соответствует свой энергетический уровень. Атом каждого химического элемента характеризуется своим набором энергетических уровней, т. е разрешённых орбит электронов (то же относится и к молекулам, кристаллам, конденсированному состоянию вещества: в саже и алмазе одни и те же атомы углерода, но оптические свойства веществ различны; металлы, прекрасно отражающие свет, являются прозрачными и даже меняют цвет (зелёное золото), если из них сделать тонкие плёнки; аморфное стекло не пропускает ультрафиолет, а из тех же самых молекул оксида кремния кристаллическое стекло прозрачно для ультрафиолета).

Поглотив фотон определённой энергии (цвета) электрон переходит на более высокую орбиту. Наоборот, испустив фотон, электрон переходит на более низкую орбиту. Электроны могут поглощать и испускать не любые фотоны, а только те, энергия которых (цвет) соответствуют разнице энергетичнских уровней именно данного атома.

Таким образом, как поведёт себя свет при встрече с веществом (отразится, поглотится, пройдёт насквозь) зависит от того, каковы разрешённые энергетические уровни данного вещества и какой энергией обладают фотоны (т. е. какого цвета падающий на вещество свет).

Чтобы фотон поглотился одним из электронов в атоме, он должен обладать строго определённой энергией, соответствующей разности энергий каких либо двух энергетиченских уровней атома, иначе он пролетит мимо. В стекле расстояние между отдельными энергетическими уровнями большое, и ни один фотон видимого света не имеет соответстсвующей энергии, которой хватило бы, чтобы электрон, поглотив фотон, смог перепрыгнуть на более высокий энергетический уровень. Поэтому стекло пропускает фотоны видимого света. А вот фотоны ультрафиолетового света имеют достаточную энергию, поэтому электроны поглощают данные фотоны и стекло задерживает ультрафиолет. В кварцевом стекле расстояние между разрешёнными энергетическими уровнями (энергетическая щель) ещё больше и поэтому фотоны не только видимого, но и ультрафиолетового света не обладают достаточной энергией для того, чтобы электроны могли их поглотить и перейти на верхние разрешённые уровни.

Итак, фотоны видимого света пролетают сквозь стекло, потому что они не обладают соответствующей энергией для перехода электронов на более высокий энергетический уровень , и стекло поэтому видится прозрачным.

Добавляя в стекло примеси, имеющие другой энергетический спектр, его можно сделать цветным - стекло будет поглощать фотоны определённых энергий и пропускать остальные фотоны видимого света.

Выбор редакции
Социальная сеть «Одноклассники» отличается тем, что владелец аккаунта всегда узнает, кто был у него в гостях и кто из друзей сейчас...

Драйвера АТОЛ – это специальная программа, необходимая для взаимодействия кассового аппарата с компьютером. Данное программное...

А также изменился интерфейс страницы спора. По этой причине у многих покупателей возникло много вопросов: как отрыть спор по новым...

Немецкое слово брандмауэр (нем. Brandmauer, от Brand - пожар и Mauer - стена) плотно вошло в обиход пользователей операционной системы...
Существует множество различных способов конвертирования различных форматов изображений. Сегодня мы с вами рассмотрим несколько из них,...
С переходом к десятой модификации операционной системы Windows большинство пользователей очень обрадовалось тому, что в интерфейсе...
Для некоторых людей подъем по утрам – очень сложная задача. Хорошо, когда не нужно никуда спешить, но если Вы боитесь опоздать на работу,...
В «Инстаграме» самыми популярными объектами являются, естественно, фотографии. Конечно, снимки с комментариями будут смотреться намного...
Аппараты на ОС Андроид отличаются возможностью изменить практически все в интерфейсе пользователя. Китайская модификация прошивки – miui,...