ARM. STM32 быстрый старт. Начинаем изучать Cortex-M на примере STM32 Программное обеспечение для прошивки


Собственно можно сказать: "А на кой он мне нужен, когда есть Discovery". С какой-то стороны да... Но. Первый камень в огород. Собирал схему на Discovery1 для работы с параллельной ОЗУ на 1 Мб. 40 проводков. Отлаживал, отлаживал и бац, нужно залить другой контроллер. Ё-ё-ё мое. Все разбери, после перепрошивки собери. Благо есть еще Discovery4. Но та же проблема. Второй камень. Discovery голая плата. Как-то ваяя очередной шедевр в 60 проводков я где-то на что-то наехал и бум. Коротнул Discover-ку напрочь. Начал разбираться. Короче коротыш попал на входное питание от USB. Слава богу или скорее инженеру ST за то что он поставил диод. Тот принял все на себя и порт не сгорел. Все бы хорошо, да вот надпись 60 на диоде мне ничего не говорила. Полез на сайт ST, нашел телефон поддержки, звоню. Але говорю, нужон наминал диёда. А мне в ответ, не волнуйтесь, давайте ка вашу почту. Даю адрес и бац мне скидывают документацию на Discovery. Схемы, платы, описание. Ну просто сказка. Я тут же нашел диод, впаял и о чудо, все заработало. После этого случая дабы не повторить содеянное я решил прикупить программатор от ST. Я думаю все его видели, такое белое яйцо с эмблемкой. Но так и не купил. Цена, какая цена. За такую цену можно купить 3 Discovery и иметь сразу три программатора. Немного подумав я вспомнил про схему которую мне скинули. Там же есть та самая... Открыл файл, заценил. Хмы, а в первой платке-то ST-LINK и усе, а интересно что в Discovery4. Взял плату и вижу надпись на ней. www.st.com/stm32f4-discovery. Так... Зашел по ссылке, куча файлов и о чудо, архив с документацией и схемой. С надеждой решил зайти на страничку родного программатора. Ага. Ща... Так вам и дали схему. В общем решил довольствоваться схемой от Discovery4.
Вот она.

Изучил сей манускрипт и понял что тут чего-то не хватат. Полез в ейнтернет и вижу что на всех просторах есть только две схемы. Одна ну ооочень замороченная, другая слишком простая (тока SWD). Не думаю, надо их скрестить. Посидел, покумекал, порисовал и радил вот такое чудо.

На проводок не обращайте внимания. Это я не запаял перемычку, а узрел после впайки разъема. Так как перемычка оказалась под разъемом и подлезть к ней не удалось, я припаял проводок. Если пропаять перемычку, то провод не нужен. После сборки его нужно прошить. Ха. Вот тут затык. Где взять прошивку для МК. Полазив в интернете я нарыл какую-то кривую прошивку, которая не работает, но имеет одну важную вещь. С этой прошивкой программатор цепляется к родному ST-шному драйверу и отдается на обновление прошивкой от ST. То есть после прошивки обнавляемся и все. И так к делу. Если вы еще не собрали плату, то дальше читать нет смысла. Для тех кто спаял, смотрим на свое изваяние. Если посмотреть на светодиоды, то рядом с красным можно увидеть два пина. Перед подачей питания на него нужно надеть джампер.

Далее справа от основного разъема есть еще три пина, это Rx, Tx и GND. К ним нужно подключить COM-порт. Эта к стати еще один плюс, данный программатор лишен проблемы курицы и яйца. Для программирования его МК нужен только COM-порт. Какой вы будете использовать, решать вам. Я использовал физический с переходником на TTL. Питание нужно подать 3,3в на 1 пин основного разъема. Если программатор положить светодиодами кверху, то на основном разъеме этот пин будет в левом нижнем углу. Лично я не стал замарачиватся и запитал от USB. У меня есть USB-хаб с возможностью подключить внешнее питание, вот через него я и запитал. То есть питание от USB пришло, а пины для данных не активны.

После того как подключили питание, если все спаяно нормально и без ошибок, МК должен быть готов к прошиванию. Далее запускаем программу Да кстати вот архив со всем что нужно. Распаковать в корень диска.

Жмем Next. Видим как идет общение с МК.

Когда все успокоится снова жмем Next.

В этом окне нужно указать загружаемый файл. Выбираем из архива файл STLinkV2.J16.S4 и жмем Next. После загрузки окно будет выглядеть так.

Теперь снимаем джампер и отключаем COM-порт. Следующим шагом устанавливаем драйвер st-link_v2_usbdriver . На момент написания статьи драйвер самый последний. Если время прошло много, то можно более свежий драйвер скачать на сайте ST. После установки драйвера подключаем программатор к USB. Если все до этого момента было сделано правильно, windows увидит девайс и установит для него драйвер.

Если все установилось удачно, то запускаем программу ST-LinkUpgrade с бабочкой. Появится окно с тетенькой у которой взгляд "Не скажу куда гляжу". Интересно кто такую нашел. Все же это лицо компании. Ну дело не в этом.

Жмем Device Connect. Если программа увидит программатор, а это должно произойти, то активируется кнопка.

Жмем на кнопку Yes >>>> и ждем пока не появится уведомление о удачном обновлении.

Собственно все. Программатор работает. Осталась выпилить отверстия в корпусе и напечатать этикетку. Вот что у меня получилось.

В последние годы 32 разрядные микроконтроллеры (МК) на основе процессоров ARM стремительно завоёвывают мир электроники. Этот прорыв обусловлен их высокой производи тельностью, совершенной архитектурой, малым потреблением энергии, низкой стоимостью и развитыми средствами программирования.

КРАТКАЯ ИСТОРИЯ
Название ARM является аббревиатурой Advanced RISC Machines, где RISC (Reduced Instruction Set Computer) обозначает архитектуру процессоров с сокращённым набором команд. Подавляющее число популярных МК, а пример семейства PIC и AVR, также имеют архитектуру RISC, которая позволила увеличить быстродействие за счёт упрощения декодирования инструкций и ускорения их выполнения. Появление совершенных и производительных 32 разрядных ARMмикроконтроллеров позволяет перейти к решению более сложных задач, с которыми уже не справляются 8 и 16 разрядные МК. Микропроцессорная архитектура ARM с 32 разрядным ядром и набором команд RISC была разработана британской компанией ARM Ltd, которая занимается исключительно разработкой ядер, компиляторов и средств отладки. Компания не производит МК, а продаёт лицензии на их производство. МК ARM – один из быстро развивающихся сегментов рынка МК. Эти приборы используют технологии энергосбережения, поэтому находят широкое применение во встраиваемых системах и доминируют на рынке мобильных устройств, для которых важно низкое энергопотребление. Кроме того, ARM микроконтроллеры активно применяются в средствах связи, портативных и встраиваемых устройствах, где требуется высокая производительность. Особенностью архитектуры ARM является вычислительное ядро процессора, не оснащённое какими либо дополнительными элементами. Каждый разработчик процессоров должен самостоятельно до оснастить это ядро необходимыми блоками под свои конкретные задачи. Такой подход хорошо себя зарекомендовал для крупных производителей микросхем, хотя изначально был ориентирован на классические процессорные решения. Процессоры ARM уже прошли несколько этапов развития и хорошо известны семействами ARM7, ARM9, ARM11 и Cortex. Последнее делится на подсемейства классических процессоров CortexA, процессоров для систем реального времени CortexR и микропроцессорные ядра CortexM. Именно ядра CortexM стали основой для разработки большого класса 32 разрядных МК. От других вариантов архитектуры Cortex они отличаются, прежде всего, использованием 16разрядного набора инструкций Thumb2. Этот набор совмещал в себе производительность и компактность «классических» инструкций ARM и Thumb и разрабатывался специально для работы с языками С и С++, что существенно повышает качество кода. Большим достоинством МК, построенных на ядре CortexM, является их программная совместимость, что теоретически позволяет использовать программный код на языке высокого уровня в моделях разных производителей. Кроме обозначения области применения ядра, разработчики МК указывают производительность ядра CortexM по десятибалльной шкале. На сегодняшний день самыми популярными вариантами являются CortexM3 и CortexM4. МК с архитектурой ARM производят такие компании, как Analog Devices, Atmel, Xilinx, Altera, Cirrus Logic, Intel, Marvell, NXP, STMicroelectronics, Samsung, LG, MediaTek, MStar, Qualcomm, SonyEricsson, Texas Instruments, nVidia, Freescale, Миландр, HiSilicon и другие.
Благодаря оптимизированной архитектуре стоимость МК на основе ядра CortexM в некоторых случаях даже ни же, чем у многих 8разрядных приборов. «Младшие» модели в настоящее время можно приобрести по 30 руб. за корпус, что создаёт конкуренцию предыдущим поколениям МК. МИКРОКОНТРОЛЛЕРЫ STM32 Рассмотрим наиболее доступный и широко распространённый МК семейства STM32F100 от компании STMicroelectronics , которая является одним из ведущих мировых производителей МК. Недавно компания объявила о начале производства 32битного МК, использующего преимущества индустриального
ядра STM32 в недорогих приложениях. МК семейства STM32F100 Value line предназначены для устройств, где не хватает производительности 16разрядных МК, а богатый функционал «обычных» 32разрядных приборов является избыточным. Линейка МК STM32F100 базируется на современном ядре ARM CortexM3 с периферией, оптимизированной для применения в типичных приложениях, где использовались 16разрядные МК. Производительность МК STM32F100 на тактовой частоте 24 МГц превосходит большинство 16разрядных МК. Данная линейка включает приборы с различными параметрами:
● от 16 до 128 кбайт флэшпамяти программ;
● от 4 до 8 кбайт оперативной памяти;
● до 80 портов ввода вывода GPIO;
● до девяти 16разрядных таймеров с расширенными функциями;
● два сторожевых таймера;
● 16канальный высокоскоростной 12разрядный АЦП;
● два 12разрядных ЦАП со встроенными генераторами сигналов;
● до трёх интерфейсов UART с поддержкой режимов IrDA, LIN и ISO7816;
● до двух интерфейсов SPI;
● до двух интерфейсов I2С с поддержкой режимов SMBus и PMBus;
● 7канальный блок прямого доступа к памяти (DMA);
● интерфейс CEC (Consumer Electronics Control), включённый в стандарт HDMI;
● часы реального времени (RTC);
● контроллер вложенных прерываний NVIC.

Функциональная схема STM32F100 представлена на рисунке 1.

Рис. 1. Архитектура МК линейки STM32F100

Дополнительным удобством является совместимость приборов по выводам, что позволяет, при необходимости, использовать любой МК семейства с большей функциональностью и памятью без переработки печатной платы. Линейка контроллеров STM32F100 производится в трёх типах корпусов LQFP48, LQFP64 и LQFP100, имеющих, соответственно, 48, 64 и 100 выводов. Назначение выводов представлено на рисунках 2, 3 и 4. Такие корпуса можно устанавливать на печатные платы без применения специального оборудования, что является весомым фактором при мелкосерийном производстве.


Рис. 2. МК STM32 в корпусе LQFP48 Рис. 3. МК STM32 в корпусе LQFP64


Рис. 4. МК STM32 в корпусе LQFP100

STM32F100 – доступный и оптимизированный прибор, базирующийся на ядре CortexM3, поддерживается развитой средой разработки МК семейства STM32, которая содержит
бесплатные библиотеки для всей пе риферии, включая управление двига телями и сенсорными клавиатурами.

СХЕМА ВКЛЮЧЕНИЯ STM32F100C4
Рассмотрим практическое использование МК на примере самого простого прибора STM32F100C4, который, тем не менее, содержит все основные блоки линейки STM32F100. Принципиальная электрическая схема включения STM32F100C4 представлена на рисунке 5.


Рис. 5. Схема включения МК STM32F100C4

Конденсатор С1 обеспечивает сброс МК при включении питания, а конденсаторы С2-С6 фильтруют напряжение питания. Резисторы R1 и R2 ограничивают сигнальный ток выводов МК. В качестве источника тактовой частоты используется внутренний генератор, поэтому нет необходимости применять внешний кварцевый резонатор.


Входы BOOT0 и BOOT1 позволяют выбрать способ загрузки МК при включении питания в соответствии с таб лицей. Вход BOOT0 подключён к шине нулевого потенциала через резистор R2, который предохраняет вывод BOOT0 от короткого замыкания при его использовании в качестве выход ного порта PB2. С помощью соединителя J1 и одной перемычки можно из менять потенциал на входе BOOT0, определяя тем самым способ загрузки МК – из флэшпамяти или от встроенного загрузчика. При необходимости загрузки МК из оперативной памяти аналогичный соединитель с перемычкой можно подключить и к входу BOOT1.
Программирование МК осуществляется через последовательный порт UART1 или через специальные программаторы – отладчики JTAG или STLink. Последний входит в состав популярного отладочного устройства STM32VLDISCOVERY , изображённого на рисунке 6. На плате STM32VLDIS COVERY 4контактный разъём программатора – отладчика STLink – имеет обозначение SWD. Автор статьи предлагает программировать МК через последовательный порт UART1, поскольку это значительно проще, не требует специального оборудования и не уступает в скорости JTAG или ST Link. В качестве управляющего устройства, способного формировать команды и отображать результаты работы про граммы МК, а также в качестве программатора можно использовать любой персональный компьютер (ПК), имеющий последовательный COM порт или порт USB с преобразователем USBRS232.

Для сопряжения COMпорта ПК с МК подойдет любой преобразователь сиг налов RS232 в уровни логических сигналов от 0 до 3,3 В, например, микросхема ADM3232. Линия передачи TXD последовательного порта компьютера, после преобразователя уровней, должна подключаться к входу PA10 микроконтроллера, а линия приёмника RXD, через аналогичный преобразователь, – к выходу PA9.

При необходимости использования энергонезависимых часов МК, к нему следует подключить элемент питания типа CR2032 с напряжением 3 В и кварцевый резонатор на частоту 32768 Гц. Для этого МК оснащён выводами Vbat/GND и OSC32_IN/OSC32_OUT. Предварительно вывод Vbat необходимо отключить от шины питания 3,3 В.

Оставшиеся свободными выводы МК можно использовать по необходимости. Для этого их следует подключить к разъёмам, которые расположены по периметру печатной платы для МК, по аналогии с популярными устройствами Arduino и отладочной платой STM32VLDISCOVERY .


Рис. 6. Отладочное устройство STM32VLDISCOVERY


Схема электрическая принципиальная STM32VLDISCOVERY.

Таким образом, в зависимости от назначения и способа применения МК, к нему можно подключать необходимые элементы, чтобы задействовать другие функциональные блоки и пор ты, например, ADC, DAC, SPI, I2C и т.п. В дальнейшем эти устройства будут рас смотрены подробнее.

ПРОГРАММИРОВАНИЕ
Сегодня многие компании предлагают средства для создания и отладки программ микроконтроллеров STM32. К их числу относятся Keil от ARM Ltd, IAR Embedded Workbench for ARM, Atol lic TrueStudio, CooCox IDE, GCC и Eclipse IDE. Разработчик может выбрать про граммные средства по своему пред почтению. Ниже будет описан инструментарий Keil uVision 4 от компании Keil , который поддерживает огромное число типов МК, имеет развитую систему отладочных средств и может быть использован бесплатно с ограничениями размера генерируемого кода 32 кбайт (что, фактически, максимально для рассматриваемых МК).

Простой и быстрый старт с CooCox CoIDE.

Итак приступим. Идем на официальный сайт CooCox и качаем последнюю версию CooCox CoIDE . Для скачивания необходимо зарегистрироваться, регистрация простая и бесплатная. Затем инсталлируем скачанный файл и запускаем.

CooCox CoIDE — среда разработки, на базе Eclipse, которая помимо STM32 поддерживает кучу других семейств микроконтроллеров: Freescale, Holtek, NXP, Nuvoton, TI, Atmel SAM, Energy Micro и др. С каждой новой версией CoIDE список МК постоянно пополняется. После успешной установки CoIDE запускаем:

Появится стартовое окно Step 1, в котором необходимо выбрать производителя нашего микроконтроллера. Нажимаем ST и переходим к Step 2 (выбор микроконтроллера), в котором необходимо выбрать конкретную модель. У нас STM32F100RBT6B, поэтому нажимаем на соответствующую модель:

Справа, в окне Help отображаются краткие характеристики каждого чипа. После выбора нужного нам микроконтроллера переходим к третьему шагу Step 3 — к выбору необходимых библиотек для работы:

Давайте создадим простейший проект для мигания светодиодом, как это принято для изучения микроконтроллеров.

Для этого нам понадобится библиотека GPIO, при включении которой, CoIDE попросит создать новый проект. На это предложение нажимаем Yes, указываем папку где будет храниться наш проект и его название. При этом, CoIDE подключит к проекту 3 другие, необходимые для работы библиотеки, а также создаст всю необходимую структуру проекта:

Чем еще хорош CoIDE, это тем, что в нем есть возможность загружать примеры прямо в среду разработки. В вкладке Components вы можете видеть, что почти к каждой библиотеке есть примеры, нажимаем на GPIO (with 4 examples) и видим их:

Туда можно добавлять и свои примеры. Как видно на скриншоте выше, в примерах уже присутствует код для мигания светодиодом GPIO_Blink. Можно нажать кнопку add и он добавиться в проект, но как подключаемый файл, поэтому мы сделаем по другому просто скопируем весь код примера в файл main.c. Единственное, строку void GPIO_Blink(void) замените на int main(void). Итак, нажимаем F7 (или в меню выбираем Project->Build), чтобы скомпилировать проект и… не тут то было!

Среде нужен компилятор GCC, а у нас его нет. Поэтому идем на страничку GNU Tools for ARM Embedded Processors , справа выбираем тип вашей ОС и качаем последнюю версию тулчайна. Затем запускаем файл и инсталируем gcc toolchain. Далее, в настройках CoIDE укажем правильный путь к тулчайну:

Опять нажимаем F7 (Project->Build) и видим, что компиляция прошла успешно:

Осталось прошить микроконтроллер. Для этого при помощи USB подключаем нашу плату к компьютеру. Затем, в настройках дебаггера необходимо поставить ST-Link, для этого в меню выбираем Project->Configuration и открываем вкладку Debugger. В выпадающем списке выбираем ST-Link и закрываем окно:

Попробуем прошить МК. В меню выбираем Flash->Program Download (или на панели инструментов щелкаем по соответствующей иконке) и видим, что МК успешно прошит:

На плате наблюдаем мигающий светодиод, видео или фото я думаю приводить нет смысла, т.к. все это видели.

Также, в CoIDE работают различные режимы отладки, для этого нажимаем CTRL+F5 (или в меню Debug->Debug):

На этом все. Как видите, настройка среды CoIDE и работа с ней очень проста. Надеюсь данная статья подтолкнет вас в изучении очень перспективных и недорогих микроконтроллеров STM32.

Данная статья является первой в планируемом цикле статей по изучению программирования микроконтроллеров. Изучая различные материалы я отметил, что практически все они начинаются с того, что новичку предлагается скачать (или использовать идущую со средой разработки) библиотеку для работы с периферийными устройствами и использовать ее для написания своей первой программы (обычно мигание светодиодом).

Меня это сильно удивило. Если верить данным статьям, для программирования не обязательно даже читать документацию к программируемому контроллеру. Меня же учили премудростям «железного программирования» совершенно иначе.

В этой статье, путь от фразы «Да, я хочу попробовать!» до радостного подмигивания светодиода, будет значительно длиннее чем у других авторов. Я постараюсь раскрыть аспекты программирования микроконтроллеров, которые прячутся за использованием библиотечных функций и готовых примеров.
Если вы намерены серьезно изучать программирование микроконтроллеров данная статья для вас. Возможно, она может заинтересовать и тех, кто вдоволь наигрался с Arduino и хочет получить в свои руки все аппаратные возможности железа.

Выбор микроконтроллера

Многие могут сказать, что начинать изучение микроконтроллеров лучше с AVR, PIC, 8051 или чего-то еще. Вопрос многогранный и спорный. Я знаю достаточно примеров, когда люди изучив Cortex-M, программировали AVR, ARM7 и т.д. Сам же я начинал с Cortex-M3. Если перед вами стоит определенная задача, в интернете достаточно много информации со сравнением различных типов микроконтроллеров и решаемых с их помощью задач. На хабре этот вопрос тоже поднимался, например .

Будем считать, что с типом микроконтроллера мы разобрались. Но на рынке представлен огромнейший спектр различных модификаций от разных производителей. Они отличаются по множеству параметров - от размера флеш памяти до количества аналоговых входов. Для каждой задачи выбор стоит производить индивидуально. Ни каких общих рекомендаций тут нет и быть не может. Отмечу лишь, что стоит начинать изучение с МК производителей имеющих как можно больший ассортимент. Тогда, при выборе МК для определенной задачи достаточно велик шанс, что из представленного ассортимента вам что-нибудь да подойдет.

Я остановил свой выбор на STM32 (хотя и считаю, что лучше начинать изучение с МК от TexasInstruments - очень грамотно составлена документация), потому что они широко распространены среди российских разработчиков электроники. При возникновении проблем и вопросов вы сможете без труда найти решения на форумах. Еще одним плюсом является богатый выбор демонстрационных плат как от производителя, так и от сторонних организаций.

Что необходимо для изучения?

К сожалению, для начала программирования МК не достаточно одного лишь ПК. Придется где-то раздобыть демонстрационную плату и программатор. Хотя это и уменьшает конкуренцию на рынке труда.

Сам я использую демонстрационную плату STM3220G-EVAL и программатор J-Link PRO . Но для начала, будет вполне достаточно STM32F4DISCOVERY , которую можно купить без особых проблем за небольшую сумму.

Все примеры будут именно для отладочной платы STM32F4DISCOVERY . На данном этапе нам будет совершенно не важно, что этой плате стоит МК на базе ядра Cortex-M4. В ближайшее время мы не будем использовать его особенности и преимущества над Cortex-M3. А как там будет дальше - посмотрим.

Если у вас есть в наличии любая другая плата на базе STM32F2xx/STM32F4xx, вы сможете работать с ней. В изложении материала я постараюсь максимально подробно описывать почему мы делаем именно так, а не иначе. Надеюсь ни у кого не возникнет проблем с переносом примеров на другое железо.

Среда разработки

Как уже неоднократно упоминалось, для ARM микроконтроллеров существует достаточное количество сред разработки, как платных так и не очень. И снова хочется опустить полемику по этому поводу. Я использую IAR Embedded Workbench for ARM 6.60 . Все примеры будут именно в этой среде. Если вам по душе (или в вашей организации используется) что-то другое (Keil, Eclipse, CCS, CooCoc и т.д.) то это вам тоже не очень помешает. На особенности, связанные именно со средой разработки, я буду обращать отдельное внимание.

Почему платная среда разработки?

Возможно, кто-то будет не совсем доволен тем, что я предлагаю использовать платную среду разработки, но в IAR есть возможность получить временную лицензию без ограничения функционала, либо безлимитную лицензию с ограничением по размеру кода (32КБ для МК это очень много).
Помимо этого, сразу замечу, что для некоторых МК не существует бесплатных сред разработки. И к сожалению эти МК в некоторых областях незаменимы.


Процесс установки я описывать не буду.

С чего начать?

Создание проекта
Для начала создадим пустой проект. IAR позволяет создать проекты на ASM, C и C++. Мы будем использовать C.

Перед нами появится пустой проект с main файлом.

Теперь необходимо настроить проект для начала работы с «нашим» МК и отладчиком. На плате STM32F4DISCOVERY установлен MK STM32F407VG . Его необходимо выбрать в свойствах проекта (General Options->Target->Device):

При выборе целевого программируемого процессора происходит загрузка его описания, что дает широкие возможности для отладки (об этом будет идти речь ниже). Кроме того, автоматически присоединяется конфигурационный файл с описанием доступного адресного пространства для линкера. Если будет необходимо, мы затронем тему конфигурационного файла линкера в следующих статьях.

После этого необходимо настроить отладчик. Отладка программы происходит непосредственно «в железе». Производится это с помощью JTAG отладчика. Более подробнее ознакомиться с тем, как это происходит можно на Википедии . На плату STM32F4DISCOVERY интегрирован отладчик ST-LINK/V2. Для работы с отладчиком необходимо выбрать его драйвер в меню Debugger->Setup->Driver . Так же необходимо указать, что отладка должна производиться непосредственно в железе. Для этого необходимо поставить флаг Debugger->Download->Use flash loader(s)


Для тех, кто увидел слово Simulator

Теоретически, IAR позволяет отлаживать программы с использованием симулятора. Но я ни разу на практике не встречал его использования.

Теперь проект готов для работы (программирования, заливки и отладки).

«ТЗ» для первого проекта
Подведем промежуточный итог: МК и отладочная плата выбраны, проект подготовлен. Пора определиться с задачей.

Не будем отходить от классики. Первым проектом будет мигающий светодиод. Благо на плате их предостаточно.Что же это означает с точки зрения программирования? Первым делом необходимо изучить принципиальную схему демонстрационной платы и понять как «заводится» светодиод.
доступен на сайте производителя. В данном описании даже есть отдельный раздел про светодиоды на плате -4.4 LEDs . Для примера, будем использовать User LD3 . Найдем его на схеме:

Простейший анализ схемы говорит о том, что для того, что бы «зажечь» светодиод необходимо на пин МК подать «1» (которая для данного МК соответствует 3.3В). Выключение производится подачей на этот пин «0». На схеме этот пин обозначается PD13 (это, наверное, самая важная информация из этого документа).

В итоге, мы можем написать «ТЗ» для нашей первой программы:
Программа для МК должна переводить состояние пина МК PD13 из состояния «0» в состояние «1» и обратно с некоторой периодичностью, различимой для человеческого глаза (важное замечание, если моргать светодиодом слишком часто глаз может этого не различить).

Прежде чем приступать к программированию, или немного теории
Прежде чем приступить к реализации нашего ТЗ, необходимо понять как производится управление МК.

Начнем с того, что любой МК включает ядро, память и периферийные блоки. Думаю, что с памятью пока все понятно. Упомяну лишь, в STM32 есть флеш память в которой хранится программа МК (в общем случае это не верное утверждение, программа может храниться во внешней энергонезависимой памяти, но пока это опустим) и другие данные, в том числе и пользовательские. Так же есть SRAM - оперативная память.

Ядро - часть микроконтроллера, осуществляющая выполнение одного потока команд. В нашем МК тип ядра - Cortex-M4. Ядро МК можно сравнить с процессором в ПК. Оно умеет только выполнять команды и передавать данные другим блокам (в этом сравнении не учитываются процессоры с интегрированными графическими ускорителями).
При этом производитель МК не разрабатывает ядро. Ядро покупается у компании ARM Limited . Главное отличие между различными МК - в периферии.

Периферийные блоки - блоки осуществляющие взаимодействие с «внешним миром» или выполняющие специфические функции, недоступные ядру МК. Современные МК (в том числе и STM32) содержат огромный спектр периферийных блоков. Периферийные блоки предназначены для решения различных задач, от считывания значения напряжения с аналогового входа МК до передачи данных внешним устройствам по шине SPI.
В отличии от ядра МК периферийные блоки не выполняют инструкции. Они лишь выполняют команды ядра. При этом участие ядра при выполнении команды не требуется.

Пример

В качестве примера можно привести блок UART, который предназначен для приема и передачи данных от МК внешним устройствам. От ядра необходимо лишь сконфигурировать блок и отдать ему данные для передачи. После этого ядро может дальше выполнять инструкции. На плечи же периферийного блока ложится управление соответствующим выводом МК для передачи данных в соответствии с протоколом. Периферийный блок сам переводит выход МК в необходимое состояние «0» или «1» в нужный момент времени, осуществляя передачу.

Взаимодействие ядра с периферийным блоком
Взаимодействие ядра МК с периферийным блоком осуществляется с помощью спецрегистров (есть еще взаимодействие через механизм прерываний и DMA, но об этом в следующих постах). С точки зрения ядра это просто участок памяти с определенным адресом, вот только на самом деле это не так . Запись данных в спецрегистр эквивалентна передаче команды или данных периферийному блоку. Считывание - получение данных от блока или считывание его состояния. Описание периферийных блоков и их спецрегистров занимает львиную долю описания МК.

ВАЖНО: После записи данных в спецрегистр и последующем чтении вы можете получить совершенно иные данные. Например, передача данных блоку UART для отправки, и считывание данных, полученных блоком от внешнего устройства, осуществляется с помощью одного и того же регистра.

Спецрегистры обычно разделены на битовые поля. Один (или несколько) бит управляют определенным параметром периферийного блока, обычно независимо. Например, разные биты одного регистра управляют состоянием разных выходов МК.

Вспоминаем С
Если вы гуру в языке C, то можете смело пропускать данный раздел. Он предназначен в первую очередь для тех, кого учили (или ктоучился сам) программировать для ПК. Опыт показывает, что люди часто не помнят важных команд. Здесь я вкратце напомню про побитовые операции и работу напрямую с памятью по ее адресу.

Запись данных по адресу в памяти

Предположим, что читая описание периферийного блока, мы поняли, что для его корректной работы необходимо записать в него число 0x3B. Адрес спецрегистра 0x60004012. Регистр 32-битный.
Если вы сразу не знаете как это сделать, попробую описать цепочку рассуждений для получения правильной команды.

Значение 0x60004012 есть не что иное, как значение указателя на ячейку памяти. Нужно именно это и указать в нашей программе, тоесть сделать преобразование типов согласно синтаксису языка C:

(unsigned long*)(0x60004012)

Таким образом, у нас есть указатель на элемент. Теперь нужно в этот элемент записать необходимое значение. Делается это разыменовыванием указателя. Таким образом получаем правильную команду:

*(unsigned long*)(0x60004012) = 0x3B;

Установка произвольных бит в 1

Предположим, что необходимо установить «1» в 7 и 1 биты по адресу 0x60004012, при этом не изменив значение всех остальных бит в регистре. Для этого необходимо использовать бинарную операцию |. Сразу приведу правильный ответ:

*(unsigned long*)(0x60004012) |= 0x82;

Обратите внимание на 2 факта. Биты считаются с нулевого, а не с первого. Данная операция на самом деле занимает неменее 3 тактов - считывание значения, модификация, запись. Иногда это не допустимо, поскольку между считыванием и записью значение одного из бит, которые нам запрещено изменять, могло быть изменено периферийным блоком. Незабывайте про эту особенность, иначе могут полезть баги, которые крайне сложно отловить.

Установка произвольных бит в 0

Предположим, что необходимо установить «0» в 7 и 1 биты по адресу 0x60004012, при этом не изменив значение всех остальных бит в регистре. Для этого необходимо использовать бинарную операцию &. Сразу приведу правильный ответ:

*(unsigned long*)(0x60004012) &= 0xFFFFFF7D;

Или его более простою запись (не переживайте за лишнюю операцию, компилятор все заранее посчитает даже при минимальной оптимизации):

*(unsigned long*)(0x60004012) &= (~0x82);

Некоторые особенности программ для МК
Здесь я постараюсь описать некоторые особенности программ для МК, которые важно помнить. Вещи достаточно очевидные, но все же.
У программы нет конца
В отличии от большинства программ для ПК, программа для МК не должна заканчиваться, НИКОГДА! А что собственно должен будет делать МК после завершения вашей программы? Вопрос, практически, риторический. Поэтому не забываем убедиться в том, что вы не забыли вечный цикл. При желании, можно перевести МК в режим сна.
Пользуйтесь целочисленными переменными
Не смотря на то, что мы используем МК с ядром Cortex-M4, который аппаратно выполняет операции над числами с плавающей точкой, советую вам отказаться от их использования. В МК без поддержки таких операций время вычислений будет просто огромным.
Откажитесь от динамического выделения памяти
Это только совет. Причина проста - памяти мало. Я не раз встречался с библиотеками, в которых были «медленные утечки» памяти. Было очень неприятно, когда после нескольких недель стабильной работы МК зависал с ошибкой. Лучше заранее продумать архитектуру своей программы так, чтобы не пришлось использовать динамическое выделение памяти.
Если же все-таки хочется использовать - внимательно изучите работу менеджера памяти или пишите свой.

Приступаем к работе!

Работа над программой для МК всегда начинается с чтения документации. Для нашего МК доступен на сайте производителя. Страниц много, но все читать пока не нужно. Как уже было сказано, большую часть документации составляет описание периферийных блоков и их регистров. Так же хочу обратить внимание на то, что этот Reference Manual написан не для одного МК, а для нескольких линеек. Это говорит о том, что код будет переносим при переходе на другие МК в этих линейках (если конечно не пытаться использовать периферийные блоки которых нет в используемом МК).

В первую очередь необходимо определиться с какими блоками предстоит работать. Для это достаточно изучит разделы Introduction и Main features .

Непосредственное управление состоянием пинов МК осуществляется с помощью блока GPIO. Как указано в документации в МК STM32 может быть до 11 независимых блоков GPIO. Различные периферийные блоки GPIO принято называть портами. Порты обозначаются буквам от A до K. Каждый порт может содержать до 16 пинов. Как мы отметили ранее, светодиод подключается к пину PD13. Это означает, что управление этим пином осуществляется периферийным блоком GPIO порт D. Номер пина 13.

Ни каких других периферийных блоков на это раз нам не понадобится.

Управление тактированием периферийных блоков
Для снижения электропотребления МК практически все периферийные блоки после включения МК отключены. Включение/выключение блока производится подачей/прекращением подачи тактового сигнала на его вход. Для корректной работы, необходимо сконфигурировать контроллер тактового сигнала МК, чтобы необходимому периферийному блоку поступал тактовый сигнал.
Важно: Периферийный блок не может начать работу сразу после включения тактового сигнала. Необходимо подождать несколько тактов пока он «запустится». Люди, использующие библиотеки для периферийных устройств, зачастую даже не знают об этой особенности.

За включение тактирования периферийных блоков отвечают регистры RCC XXX peripheral clock enable register .На месте XXX могут стоять шины AHB1, AHB2, AHB3, APB1 и APB2. После внимательного изучения описания соответствующих регистров, можно сделать вывод о том, тактирование периферийного блока GPIOD включается установкой «1» в третий бит регистра RCC AHB1 peripheral clock enable register (RCC_AHB1ENR) :

Теперь необходимо разобраться с тем, как узнать адрес самого регистра RCC_AHB1ENR .

Замечание: Описание системы тактирования МК STM32 достойно отдельной статьи. Если у читателей возникнет желание, я подробнее освещу этот раздел в одной из следующих статей.

Определение адресов спецрегистров
Определение адресов спецрегистров необходимо начинать с чтения раздела Memory map в Reference manual. Можно заметить, что каждому блоку выделен свой участок адресного пространства. Например, для блока RCC это участок 0x4002 3800 - 0x4002 3BFF:

Для получения адреса регистра, необходимо к начальному значению адресного пространства блока RCC прибавить Addr. offset нужного регистра. Addres offset указывается и в описании регистра (см. скриншот выше).

В итоге, мы определили адрес регистра RCC_AHB1ENR - 0x4002 3830.

Блок GPIO
Для общего ознакомления с блоком GPIO я настоятельно рекомендую полностью прочитать соответствующий раздел Reference Manual. Пока можно не особо обращать внимание на Alternate mode . Это оставим на потом.

Сейчас же наша задача научиться управлять состоянием пинов МК. Перейдем сразу к описанию регистров GPIO.

Режим работы
В первую очередь необходимо установить режим работы 13 пина порта D как General purpose output mode , что означает что блок GPIO будет управлять состоянием пина МК. Управление режимом работы пинов МК производитсяс помощью регистра GPIO port mode register (GPIOx_MODER) (x = A..I/J/K) :

Как видно из описания для совершения требуемой нам настройки необходимо записать значение 01b в 26-27 биты регистра GPIOx_MODER . Адрес регистра можно определить тем же методом, что описан выше.

Настройка параметров работы выходных пинов порта GPIO
Блок GPIO позволяет применить дополнительные настройки для выходных пинов порта. Данные настройки производятся в регистрах:
  • GPIO port output type register (GPIOx_OTYPER) - задается тип выхода push-pull или open-drain
  • GPIO port output speed register (GPIOx_OSPEEDR) - задается скорость работы выхода
Мы не будем менять данных параметров, поскольку нас вполне устраивают значения по умолчанию.
Установка значения на пине МК
Наконец-то мы подошли к моменту управления состоянием выхода МК. Для утановки выходного значения на определенном пине МК есть два метода.

Используем регистр GPIO port bit set/reset register (GPIOx_BSRR)

Запись «0» или «1» в биты 0-16 приводят к соответствующему изменению состояния пинов порта. Для того, чтобы установить определенное значение на выходе одного или нескольких пинов МК и не изменить состояния остальных, необходимо будет пользоваться операцией модификации отдельных бит. Такая операция выполняется не менее чем за 3 такта. Если же необходимо в часть битов записать 1, а в другие 0, то понадобится не менее 4 тактов. Данный метод предпочтительнее всего использовать для изменения состояния выхода на противоположное, если его изначальное состояние не известно.

GPIO port bit set/reset register (GPIOx_BSRR)

В отличии от предыдущего метода, запись 0 в любой из битов данного регистра не приведет ни к чему (да и вообще, все биты write-only!). Запись 1 в биты 0-15 приведет к установке «1» на соответствующем выходе МК. Запись 1 в биты 16-31 приведет к установке «0» на соответствующем выходе МК. Этот метод предпочтительнее предыдущего, если необходимо установить определенное значение на пине «МК», а не изменить его.

Зажигаем светодиод!
Найдя адреса всех необходимых регистров, можно написать программу, которая включает светодиод:
void main() { //Enable port D clocking *(unsigned long*)(0x40023830) |= 0x8; //little delay for GPIOD get ready volatile unsigned long i=0; i++; i++; i++; i=0; //Set PD13 as General purpose output *(unsigned long*)(0x40020C00) = (*(unsigned long*)(0x40020C00)& (~0x0C000000)) | (0x04000000); //Turn LED ON! *(unsigned long*)(0x40020C14) |= 0x2000; while(1); }
Можно компилировать (Project->Compile ) и заливать (Project->Download->Download active application ). Или запустить отладку (Project->Dpwnload and Debug ) и начать выполнение (F5).
Светодиод загорелся!
Мигаем светодиодом
Мигание светодиода есть ни что иное, как попеременное включение и выключение с задержкой между этими действиями. Самый простой способ - поместить включение и выключение в вечный цикл, а между ними вставить задержку.
void main() { //Enable port D clocking *(unsigned long*)(0x40023830) |= 0x8; //little delay for GPIOD get ready volatile unsigned long i=0; i++; i++; i++; i=0; //Set PD13 as General purpose output *(unsigned long*)(0x40020C00) = (*(unsigned long*)(0x40020C00)& (~0x0C000000)) | (0x04000000); while(1) { //Turn LED ON *(unsigned long*)(0x40020C14) |= 0x2000; //Delay for(i=0; i<1000000 ;++i); //Turn LED OFF *(unsigned long*)(0x40020C14) &= ~0x2000; //Delay for(i=0; i<1000000 ;++i); } }
Значение 1000000 в задержке подобрано экспериментально так, чтобы период мигания светодиода был различим глазом, но и не был слишком велик.
Оптимизируем алгоритм
Минусом выбранного подхода миганием светодиодом является то, что ядро МК большую часть времени проводит в пустых циклах, хотя мог бы заниматься чем-нибудь полезным (в нашем примере других задач нет, но в будущем они появятся).

Для того, чтобы этого избежать, обычно используется счетчик циклов, а переключение состояние пина МК происходит при прохождении программы определенного числа циклов.
void main() { //Enable port D clocking *(unsigned long*)(0x40023830) |= 0x8; //little delay for GPIOD get ready volatile unsigned long i=0; i++; i++; i++; i=0; //Set PD13 as General purpose output *(unsigned long*)(0x40020C00) = (*(unsigned long*)(0x40020C00)& (~0x0C000000)) | (0x04000000); while(1) { i++; if(!(i%2000000)) { //Turn LED ON *(unsigned long*)(0x40020С14) |= 0x2020; } else if(!(i%1000000)) { //Turn LED OFF *(unsigned long*)(0x40020С14) &= ~0x2000; } } }
Но и тут не обойдется без проблем, с изменением количества команд выполняемых внутри цикла, будет меняться период мигания светодиодом (или период выполнения других команд в цикле). Но на данном этапе мы не можем с этим бороться.

Немного об отладке
IAR позволяет осуществлять отладку приложения непосредственно в железе. Все выглядит практически так же, как и отладка приложения для ПК. Есть режим пошагового выполнения, входа в функцию, просмотр значения переменных (В режиме отладки View->Watch->Watch1/4 ).

Но помимо этого, присутствует возможность просмотра значений регистров ядра, спецрегистров периферийных блоков (View->Register) и т.п.
Я настоятельно рекомендую ознакомиться с возможностями дебаггера во время изучения программирования МК.

Несколько слов в заключение

Возможно, многие скажут, что ручное прописывание адресов в программе это не правильно, поскольку производитель предоставляет файлы с определениями регистров и битовых полей, библиотеки для работы с периферией и другие инструменты, облегчающие жизнь разработчику. Я с этим полностью согласен, но все равно считаю, что первые шаги в программировании МК необходимо делать перекапывая документацию к вручную, самостоятельно определяя необходимые регистры и битовые поля. В дальнейшем этим можно не пользоваться, но уметь нужно обязательно.
Приведу лишь несколько причин для этого утверждения:
  • В библиотеках от производителя иногда встречаются ошибки! Я один раз чуть не сорвал срок проекта из-за этого. Несколько раз перепаивал чип, думая, сто повредил кристалл при пайке (до этого такое случалось). А проблема заключалась в том, что в библиотеке был неверно прописан адрес спецрегистра. Обычно такое случается с МК или линейками МК только вышедшими на рынок.
  • Библиотеки для работы спериферией некоторых производителей не реализуют всех возможностей периферийных блоков. Особенно этим грешилb Luminary Micro , которых в последствии выкупили TI. Приходилось писать инициализацию периферии вручную.
  • Многие привыкают начинать программирование МК с изучения примеров. Я считаю, что сперва необходимо определиться с тем, что позволяет реализовать МК. Это можнопонять только прочитав документацию. Если чего-то нет в примерах, это не значит, что железоэто не поддерживает. Последний пример - аппаратная поддерка PTP STM32. В сети, конечно, можно кое-что найти, но это не входит в стандартный набор от производителя.
  • Драйверы периферийных блоков некоторых производителей настолько не оптимизированы, что на переключение состояния пина средствами библиотеки тратится до 20 тактов. Это непозволительная роскошь для некоторых задач.

Спасибо всем, кто прочитал мой пост, получилось значительно больше чем я ожидал в начале.
Жду ваших комментариев и аргументированной критики. Если у прочитавших возникнет желание - постараюсь продолжить цикл статей. Возможно у кого-то есть идеи по поводу тем, которые стоило бы осветить - я был бы рад их услышать.

Некоторые из микроконтроллеров stm32 поддерживают USB DFU протокол (их список можно посмотреть в app note AN3156), в такие МК прошивку можно заливать через обычный USB, используя например DFuSe demo от ST, либо опенсурсный dfu-util. С этим вариантом все понятно и описывать его я не буду.

Для тех же МК (в частности и того, который используется в плате BluePill — STM32F103C8T6), которые обделены поддержкой DFU, так или иначе нужен программатор, например ST-Link V2 Mini

Распиновка устройства:

Подключается к плате просто:

ST-Link STM32F103C8T6 3.3V --- 3.3V GND --- GND SWDIO --- DIO SWCLK --- DCLK

Также нужна утилита ST-Link Utility, скачать ее можно с официального сайта st.com — ссылка . При первом подключении неплохо было бы обновить firmware самого программатора. Выбираем ST-LINK -> firmware update, если доступна более свежая firmware, то будет что-то подобное:

Выбираем Yes >>>>, прошивка обновляется.

Далее открываем собственно файл с прошивкой, и выбираем Target -> Connect. В окне состояния утилиты появится информация и вашем МК — это значит, что программатор подключен корректно и утилита может контактировать с МК. Пример:

Затем нужно сделать полную очистку чипа, выбираем Target -> Erase Chip

В случае, если например, моя прошивка из поста контроллере педалей и кнопок уже была залита и ее нужно обновить или перезалить, то программатор не сможет так просто подключиться к плате (потому что я использую пины SWD как обычные GPIO). В этом случае есть два варианта:

  1. переставить оба желтых джампера. Плата в этом случае загрузится у вас сразу во внутренний бутлоадер
  2. можно сделать так называемый Connect under Reset. Для него последовательность будет такая:
  • в ST-Link Utility выбираем Target -> Settings
  • в Reset Mode выбираем Hardware Reset
  • нажимаем и держим кнопку Reset на плате
  • нажимаем OK в ST-Link Utility
  • отпускаем кнопку Reset на плате

PS. Если у вас есть плата для разработчиков SMT32F4Discovery, то она уже имеет в себе программатор и его также можно использовать для прошивки другой платы. В данном случае нужно использовать разъем SWD у STM32F4Discovery и убрать обе перемычки CN3. Разъем SWD имеет следующую распиновку:

Для полноценной работы с отладочной платой в первую очередь нужен программатор! В продаже представлено множество различных отладочных плат с программаторами/отладчиками на борту, наибольшего распространения приобрели платы от самого производителя микроконтроллеров, фирмы ST — Discovery Kits .

Внутрисхемный программатор/отладчик ST-LINK/V2 расположен на платах Discovery и его можно и нужно использовать при работе с собственными отладочными платами, а так-же при программировании устройств на основе микроконтроллеров STM32.

В статье рассмотрим использование платы STM32F4Discovery (рисунок 1) в качестве программатора/отладчика.

Рисунок 1

В верхней части платы расположен ST-LINK/V2 и может работать только как SWD интерфейс. Первоначально плата настроена на работу с бортовым МК, и для использования с другими микроконтроллерами необходимо произвести несколько манипуляций.

Компоновка платы приведена на рисунке 2.

Рисунок 2

Красным выделены:

1) Собственно сам разъем SWD — CN2;

2) Перемычка для переключения между бортовым МК и разъемом SWD — CN3;

3) Питание (3 В) — VDD.

В технической документации приведена следующая распиновка разъема CN2 (рисунок 3).

Рисунок 3

Подключаем нашу плату к пинам:

2 — линия тактирования;

3 — земля (минус питания);

4 — линия данных;

5 — сигнал сброса МК.

Если плата питается не от внешнего источника, то можно за питать от платы Discovery (VDD уровень 3 вольт).

Далее нужно переключить STLink на работу с внешним микроконтроллером, для этого убираем перемычки CN3. По всем правилам игры — можно уже смело работать с другими отладочными платами… Но чудо не всегда происходит… Для полноценной работы нужно сделать еще одну небольшую доработку!

Для исключения влияния бортового МК и МК на отладочной плате нужно еще разделить сигнал сброса T_NRST, для этого на плате Discovery предусмотрена перемычка SB11, расположена она на обратной стороне платы (рисунок 4).

Рисунок 4

Схема данного участка приведена на рисунке 5.

Рисунок 5

На плате перемычка SB11 уже запаяна, и сигнал сброса одновременно поступает на два микроконтроллера. Выпаяв бусинку-перемычку и припаяв на проводках разъем с двумя контактами можно отключать сигнал сброса от МК на плате Discovery. Фотография платы с изменениями приведена на рисунке 6.

Рисунок 6

Фотография подключенной отладочной платы к плате Discovery приведена на рисунке 7

Выбор редакции
Социальная сеть «Одноклассники» отличается тем, что владелец аккаунта всегда узнает, кто был у него в гостях и кто из друзей сейчас...

Драйвера АТОЛ – это специальная программа, необходимая для взаимодействия кассового аппарата с компьютером. Данное программное...

А также изменился интерфейс страницы спора. По этой причине у многих покупателей возникло много вопросов: как отрыть спор по новым...

Немецкое слово брандмауэр (нем. Brandmauer, от Brand - пожар и Mauer - стена) плотно вошло в обиход пользователей операционной системы...
Существует множество различных способов конвертирования различных форматов изображений. Сегодня мы с вами рассмотрим несколько из них,...
С переходом к десятой модификации операционной системы Windows большинство пользователей очень обрадовалось тому, что в интерфейсе...
Для некоторых людей подъем по утрам – очень сложная задача. Хорошо, когда не нужно никуда спешить, но если Вы боитесь опоздать на работу,...
В «Инстаграме» самыми популярными объектами являются, естественно, фотографии. Конечно, снимки с комментариями будут смотреться намного...
Аппараты на ОС Андроид отличаются возможностью изменить практически все в интерфейсе пользователя. Китайская модификация прошивки – miui,...